ONLINE VIRTUAL TEAM COLLABORATION PLATFORM WITH 3D GRAPHICS

-RESCUE-

INITIAL DESIGN REPORT

INCREDIBLES

Salih Ahi
Kamil Nemath
Abdulkadir Yazici

Mustafa Onder

Initial Design Report

1. INTRODUCTION

1.1. Project Description
1.1.1. Purpose
1.1.2. Scope
1.1.3. Objectives

1.2. Constraints

1.3. Scenario

2. MODULES
2.1 Network Module
2.2 Sound module
23 Graphics Module
2.4 Engine Module
2.5 Al Module

2.6 Physics Module

3 USER INTERFACE

3.1 Client Menu

3.2 Server Menu

4 CLASS DEFINITIONS
41 Network

42 Sound

43 Voice

4.4 Graphics

45 Input

46 Physics

4.7 Engine
4.7.1 Timer
4.7.2 Trigger
4.7.3 BaseSquad
4.7.4 PoliceSquad
4.7.5 BombermanSquad
4.7.6 FirefighterSquad

w w w w

11

11

12

13

13

14
14
14
14
14
15
15

Initial Design Report

4.7.7 Options

4.7.8 Officer

4.7.9 PoliceOfficer
4.7.10 Bomberman
4.7.11 Firefighter
4.7.12 CustomObject

4.7.13 Item
4.7.14 BaseCharacter
4.7.15 Map

4.7.16 Region

4.7.17 Building

4.7.18 Floor

4.7.19 Room

4.7.20 Leader

4.7.21 PoliceLeader
4.7.22 BombermanLeader
4.7.23 FirefighterLeader
4.7.24 Civilian

4.7.25 Vector

4.8 Al
4.8.1 Path Finder
4.8.2 Behaviours Decider
4.8.3 Script Engine

5 STATE TRANSITION DIAGRAM

6 SYSTEM ANALYSIS

6.1 Data Flow Diagram
6.1.1 DFD Level-0
6.1.2 DFD Level-1
6.1.3 DFD Level-2

6.1.3.1 Server Core
6.1.3.2 Client Core

6.2 Use Case Diagrams
6.2.1 Client: Menu State Use Case
6.2.2 Server: Menu State Use Case
6.2.3 Client In-Simulation State Use Case
6.2.4 Server: In-Simulation State Use Case
6.2.5 Server and Client: Pause State Use Case

7 TOOLS

8 FUTURE WORKS

9 SCHEDULE

15
16
16
16
16
17
17
17
18
18
18
18
19
20
20
20
20
20
20

22
22
22
23

24

25

25
25
25
26
26
27

28
28
29
30
30
31

32

32

33

1.

Initial Design Report

Introduction

This report is written by Ceng490 students for an overview of design of the project Rescue. A detailed
explanation of the scenario description, data flows, class and state diagrams are given yet they are not
final and may be changed in the final design report.

1.1. Project Description

1.1.1. Purpose

The purpose of the project is:

e Tosimulate real world scenarios in a virtual environment.

e To train squad leaders each specialized on its own area and improve their skills in their
areas.

e Toimprove collaboration between different squad leaders.

1.1.2. Scope

The project will be developed for leaders of squads mentioned below:

e police squad

o fire squad

e bomb defuse squad
In addition, this simulation could be useful for anyone who wants to increase their team
collaboration skills.

1.1.3. Objectives

Project will have the following features:

. The scenarios are going to be designed in a realistic manner.

. There will be a facilitator who manages the simulation from the server and can intervene
anything in the scenario.

. Facilitator will be able to choose among several different scenarios.

. Users can communicate with facilitator and other users via the voice chat.

. Facilitator can observe everything in the simulation from different view angles.

. Users follow the scenario from the first person view.

. Users will have limited resources and tools. These resources will be both equipments and
people.

The squad leader’s subordinates are capable of accomplishing given tasks.

The program will run in two modes: passive and active mode. The features above will be same for
both modes, however there will be some differences:

3

Initial Design Report

Passive mode:

Users have restricted interaction with computer.
. Users manage their teams via the facilitator.

Active mode:

Users have active interaction with computer.

. Users manage their teams using user interfaces on their own computers and via the facilitator.

1.2. Constraints

There is not much constraint given by the company. Also there is not any restriction to project platform or
development environment. The constraints are:

. The project must have been finished by June 2008.

. The project must be done by 4 Metu-Ceng senior students.

. The project schedule must be synchronous with the course schedule.
. The trainee user interface must not be complex.

. Trainees’ view perspective must be first person view.

. Facilitator must not affect the flow of scenario.

1.3. Scenario

Prologue : The scenario takes place in a large public building (like a big shopping center as Armada) in
present time. In the building several minor bombs have exploded and as a result fire has started in some
areas. And it has been reported that several unexploded bombs may still exist.

Main goal : Take all of the civilians to a safe area before they get hurt and defuse all of the bombs.
Teams : Firefighters, police squad and bomb defuse squad
Tools & resources :

Firefighers : Water is used as both tool and resource. They have two sources of water one of which is
infinite and the other one is finite. Also they have a fire engine.

Police squad : A maul will be used as a tool for breaking the doors. Also a resource will be used for
taking out the civilians from the high levels of the building.

Bomb defuse squad : A trained dog will be used as a tool for finding the bombs. Also detonators will
be supplied as a resource for deactivating the bombs and exploding the doors.

Subgoals :

Firefighters: Their task is to prevent the fire to spread over the building. Also they must distinguish the
fire in specific areas so that police and bomb defuse squads will be able do their task on these areas.

Initial Design Report

Police squad : Their task is to find and take out the civilians from the scene. Also they must help bomb
defuse squad enter the rooms by breaking the doors with their maul.

Bomb defuse squad : Their task is to find and deactivate the bombs. Also they must help police squad
enter the rooms by blowing up the doors with their detonator.

Colloboration Analysis:
If a team does not exist;

Fire fighters : The fire will spread over the building. As the result police and bomb defuse squad wil not be
able to operate on areas which are under fire, also civilians will be hurt by the fire.

Police squad : Not all the civilians will be found and the found ones will be taken out of the scene in an
unorganized way. Also bomb defuse squad may have some problems on entering some rooms since no
doors will be broken by the police squad.

Bomb defuse squad : The bombs will not be defused and will damage the building and may damage the
civilians in the evidence area. Also the police squad will not be able to enter some rooms since no door
will be blowed up by the bomb defuse squad.

If a team isn’t collobrating with the others;

Firefighters : Police and bomb defuse squad wil not be able to operate on areas which are under fire. And
they may be trapped by the fire. Also civilians will be hurt by the fire.

Police squad : There will be time loss for bomb defuse squad for waiting the door to be broken. Also
firefighters may try to distinguish fires in unnecessary places.

Bomb defuse squad : Police squad or civilians under their control may be hurt by bomb defuse squad’s
detonator. There will be time loss for police squad for waiting the door to be exploded. Also firefighters
may try to distinguish fires in unnecessary places.

Scenario Specifications:

Bombs defuse squad is able to blow up any door with their detonators, but police squad is able to break
only thin doors. Since bomb defuse squad has a limited number of detonators, they are not enough for
blowing up all the doors. So they need police squad assistance for passing through the thin doors.
Likewise police squad needs bomb defuse squad assistance for passing through the though doors.

2. Modules

2.1 Network Module

The project will be a real time online multi-user simulation. Users will connect to the system via
network connection. This requires a good server/clients network architecture. There will be three
clients and a server connected to each other. It is simply as follows:

Initial Design Report

Sarear
Faciltalor

% -,rl

Clhent 3.
Bomi daluss

Claant 1 sqisad kaader

Pofics squad
aadar

Client 2!
Firefightar
chial

.

There will be continuous data flow from server to clients and clients to server. This data will be
sended and received as network packages. The network packages are converted into message
objects. There will be two types of messages: voice packages for voice communication and all
other messages. Every message object have tree main fields:

- message id: to determine the type of message,
- userid: to determine who send the message,
- message body: includes the message content.

Server is a user having extra privilages. He starts the session and waits for users to connect server
as a client with their user id. After all connections are estaplished system is ready for bidirectional
dataflow. Since the system have server-client architecture all the clients’ messages are collected in
server’s message pool. Server processes them one-by-one and sends its own packages to related
targets if necessary. Both clients and server have two main threads. First is for sending prepared
messages to targets and second is for receiving and processing incoming messages. The simulation
will be ended by the server.

2.2 Sound module

Voice chat is essential part of simulation. Users will be able to communicate with other user
including facilitator via voice chat. When user wants to talk with someone he presses the button
and then microphone start to record the speech. Actually recorded data agglomerates in the
buffer, and when buffer becomes full data will be encoded into package before being sent to
server. Data packages, received by server, are transferred to appropriate user. When client gets
message it decodes the package and speaker will play the speech. There will also be two main
threads running one for recording speech and second for decode and playing the received data
packages.

Initial Design Report

2.3 Graphics Module

Graphics has always been one of the most important aspect of a program for the end-user.
Since computer users usually don’t have a detailed knowledge (and they don’t need to actually)
about the infrastructure and the architecture of a program, a well designed project may be
thought as a useless one because of its hardly managable and complex user interface. Especially in
a simulation program, making the user feel as if he is in the simulated environment is a hard task
to achieve without decreasing the usability. The more the reality is achieved, the more successful
and credible the results of the simulation are. Considering those facts, we try to present an
environment with satisfying details level to the user. But this requirement should not overcome
the usability of the system since the users are predicted to be trainees which are not so
professional in managing complex GUIs.

Such goals bring the requirement of a well design of the graphics module. The general
methodology is to define the module as seperate as possible from the main program to debug and
test easier. Thus we designed a module, which consists of a single SceneManager. Our approach is
basically as follows:

e Load all objects to the scene at the beginning of the simulation.

e Asthe simulation commences, if there is a change in the object’s properties which
will affect how it will be rendered, that change is reported to SceneManager.

e SceneManager receives the changes, recalculates, and draws to the screen.

2.4 Engine Module

The engine is the core of the simulation. It basically is the boss which manages all other
modules, establishes the connection and controls the dataflow between other parts of the
system. The engine also applies game logic rules, such as spreading of fire, exhaustion of
resources, etc. Starting and terminating the triggers is another task done by the engine module.
All map, character and environment object data is stored and their related properties are
transferred to related modules by the engine. The engine is composed of several classes.

2.5 Al Module

Al is the brain of a system. The better the Al of a program, the better it can simulate human
actions and present a more realistic system. In our project, since we are not advanced in aspects
of developing a complex Al, simple tasks like pathfinding and decision making will be done by this
module. For these two subtasks, two classes will be implemented as described in the following
sections. This module contains three classes which are PathFinder, BehaviourDecider and a
ScriptEngine powered by Python.

2.6 Physics Module

With just stunning graphics, fast network protocols and a genious Al, a simulation may be
complete but the objects will fall when placed in the air! This is just one task the physics module
7

Initial Design Report

should overcome. The system we are planning to develop will be able to calculate basic physical
properties of enviromental objects and characters.

User Interface

The user interface, an mentioned above, is designed to be simple and useful for the trainees to
navigate easily. Two seperate menus are designed for client and server.

3.1 Client Menu

e From the main menu, user can connect to a server, adjust simulation settings or exit the
system.

¢ Inthe join menu, after typing the server’s IP address and specifying a name for the user, the
simulation begins.

e From the options menu, user can change graphics settings (e.g. resolution, texture details..),
control settings (e.g redefine movement keys, camera control keys,..), or adjust volume

settings.
Server IP:
Resolution: b
KA Ant-Alias
Join
Back =
Accept/Cancel
Join
Options
Exit
eianhiis Forward
Turn left
Controls
Sound 7
Back Accept/Cancel
Speaker volume
Mic valurme
Accept/Cancel
Client Menu

Initial Design Report

3.2 Server Menu

e Inthe main menu, facilitator can host a new session, adjust game settings or exit the
system.

e From the create menu, IP address will be shown for the clients to join and the facilitator will
choose whether the simulation will run on active or passive mode.

e From the options menu, user can change graphics settings (e.g. resolution, texture details..),
control settings (e.g redefine movement keys, camera control keys,..), or adjust volume

settings.
Your IP:
' Resolution: w
Simulation Mode: - Ant-Alias
Create/Back e
Accept'Cancel
Create
Options
Exit
Graphics ?3;:’?;;
Confrols
Sound
Back Accept/Cancel

Speaker volume
Mic volume
Accept/Cancel

Server Menu

4 Class Definitions

4.1 Network

Network module consists of three classes. Two classes for client and server network modules
which inherit the user class and one common Message class. Message types are to be defined in
detail in the final report. We will use XML for message bodies which will make handling messages

across the network.

! tser
Abstract Class
= Fields
o userlD :int
2# userlP: string
usertlame : string
= Methods

4 getUserID() int
4 getUserIP() ¢ skring

4 getUserMamed) @ string

Initial Design Report

)

o User{int newlserID, string newuserIP, string name)

T e e o

b

¥

-
Server
Sealed Class
=+ ger

[= Fields
o connectedUsers : Lisk<User =
logFile : string
message | Message
= Methods
addUser{User newllser) ; bool
endsimulationd) : bool
% getCurrentMessagel) | Message
9 getlogFilel) @ string
% getMessager) @ Message
getUserlist) © Lisk=User>
loggeristring newlog) : bool
pausesimulationd) : bool
processMessageMessage message) ¢ bool
sendMessage(Message newMessage) : bool
W Server()
4% startSimulation() : bool

-
Client

1=l Fields

1= Methods

¥

Sealed Class
Lser

message i Message

& Client()
2% conneck25erver(string serverlP) : bool
disconnectFromServer() | void
% getCurrentMessagel) : Message
% getMessagel) @ Massage
% processMessage(Message message) @ bool
% sendMessage(Message newMessage) @ bool
setUserID) : bool
setUsertame!) ¢ bool

Message
Clazs

= Fields
Lg) messageBody ¢ string
y messagell | messageT ype
@@ userID :ink
= Methods
v getMessageBody() @ string
@ getMessageTvpel) : messageType
@ getUserID{) :ink

*¥

&% Message(messageType bvpe, ink sender, string message)

&% todtring() ; string
= Mested Types

messageType
Ernurmn

Ackion
Skark
End

b

10

Initial Design Report

4.2 Sound

This class is used for playing environment sound, menu music and any audio files throughout the
simulation.

[Audio
Class

¥

=l Fields
¢ audioType :int
o fileMame : string
¢ fileType : string
¥ status : bool
= Methods
i Audiafint type, string filePath)
% Forward() : boaol
2% getdudioType() ©int
4% getStatus() : bool
2% mutel) : boal
2% pausel) : bool
2" play): bool
2% rewind() : boal
2% setvolumel) : bool

4.3 \Voice

VoiceMessage is separated from normal Message class since it has a different structure.
Speaker and Microphone classes are used for encoding and decoding audio streams.

*»

| ¥oiceMessage
Class

=I Fields
¢ senderlD :int
g targetID :ink
g woicestream @ YoiceStream
=l Properties
i‘*',:‘ targetID { get; set; b 1ink
= Methods
@ getsenderID() : ink
W getVoiceStream() ; WoiceStream
2% toStringd) @ string
2% VoiceMessagelint sender, int target, YoiceStream stream)

11

Initial Design Report

b

[Speaker
Class

=I Fields
ﬁ? message : YoiceMessage
g stream : VoiceStream
= Methods
4% getWoiceMessage() : YoiceMessage
iy Speaker()
4% startDecoding(YoiceStream stream : bool

*

[Microphone
Class

= Fields
ﬂ@ message | YoiceMessage
g stream : VoiceStream

= Methods

@ Microphone)
4% send¥oiceMessageVoiceMessage message) : bool
4 startEncodingl) : VoiceStream

4.4 Graphics

This module consists of a single SceneManager class. Objects are loaded into the class and
changes are reported in as they occur. Rendering details are handled inside the class.

-
SceneManager
Sealed Class

=l Fields

:',@ device : IrtlichtDevice
Ln,\'f objects ; List <CustomObjects =
= Methods
2% initialized) : bool
% loadObjects(List <CustomObjects > objects) : void
2% moveCamera(Veckor direction) : bool
% objectChanged(int id, Yector position, Yector direction, Yector scale) ; woid
4" setAnimation(int objectID, AnimMode mode; @ bool
4 terminate() : bool
= hested Types

¥

AnimMode
Erurmn

RLIM
ALK
STAND
31T
LAY

12

Initial Design Report

4.5 Input

InputManager class handles keyboard and mouse events with its KeyboardHandler and
MouseHandler members. These handlers access Keyboard and Mouse classes which have event

polls and translate events to InputManager.

r — = -
InputManager @) KeyboardHandler e MouseHandler S
Sealed Class Sealed Class Sealed Class
= Fields [= Fields = Fields

l{iﬁ keyboardHandler : KevboardHandler :{J kevboard : Kevboard _n,* mouse | Mouse
2 mouseHandler | MouseHandler = Methads B Methads
= Methods ¢ ReadkevboardInput() : woid & ReadMouseInput() : void
& InputManager(Form Form)
\, ,
@] O
r — i
Keyboard @) Mouse @)
Sealed Class Sealed Class
[=I Fields = Fields
isDisposed : bool ¥ buttonBuffer : beyte[]
¢ keyboardDevice : Device ¢ isDisposed : boal
ﬁ? keyboardstate ; Kevboardstate ;n‘\f mouseDevice | Device
[= Properties _:;J mousestate : MouseState
5 sState { get; + : Keyboardstate =l Properties
= Methods o MouseButtons § get; b byte[]
4 Dispose() : void 5 MouseX { get; -1 int
7% Dispose(boal disposing) : void 7 Mousev { get; | in
& Keyboard{Form Form} ﬁ] MouseZ { get; } ¢ int
@ Pol() : vaid 2 State { get; b MouseState
r = Methods

@ Disposel) : waoid
7% Dispose(bool disposing) : vaid
W Mouse(Form Farm)

W Poll) : void

4.6 Physics

This module consists of a single Physics class. Physics class handles movement and

interaction of objects with its newtonWorld

p
PhysicsEngine
Sealed Class

[=l Fields
2 newtoniworld @ Newtoniworld
= Methods
i AddObject{Customdbiect obje) : woid
@ PhysicsEngine{Map map)
W Removebject{CustomObject obje) : woid
i Tick{double elapsedTime) : List<CustomObject =

13

Initial Design Report

4.7 Engine

4.7.1 Timer
This class helps control game speed of the simulation.

Timer ES
| Static Class
I

'
I

= Fields
¥ currentFPS L ink
¢ deltaTime : Float
¢ lastFPaCalculationTime : Float
¢ lastTickTime : Float
¥ previousFRS ¢int
=l Properties
i‘*',:‘ DeltaTime { get; + : floak
Eo FPS {get; brint
=l Methods
W Tick() : woid
o Timer()

D ———

1 Mested Tyvpes

4.7.2 Trigger

This is the class for triggering events during the simulation.

]

(Trigger
Class

=I Fields
¢ timeLeft : double
= Methods
% Tick{double time) : void
+ Mested Tvpes

4.7.3 BaseSquad
This is the main squad class. All other squads inherit this class.
4.7.4 PoliceSquad

This is the police team class. It composes of many PoliceOfficer classes and controls them
according to the orders given by PoliceLeader

14

Initial Design Report

4.7.5 BombermanSquad

This is the bomb defuse team. It composes of many Bomberman classes and controls them
according to the orders given by BombermanlLeader

4.7.6 FirefighterSquad

This is the firefighter team. It composes of many Firefighter classes and controls them
according to the orders given by FirefighterLeader

Absirant Fgrae! £
sirtrad Thes
bk Thpgche

BambmrmanSogmad H Palicwiguad

sl Chies sl Ches

4 B b S =B babr gt S

= Vathoos = Fathoos
w BosbemanSquedibiing nama, ink |, int susdiin, ecior poition, Wecior dir w PolicaSoued sring reere, int id, int squasdlioe, Yecior paniticn, Vecbar
% Dby Boarkd CuntoaniCbpact barsh] : baal W LimiFlad CuntoaniCtject doar | @ boal
w Expicdslioon CistareThied: door) bood w LmFPopsCustarethied: pindoe) : bood

W SeparhAnoanRoors roan) | bool

Fireagabe rhgmad £
el Chien
B bkt Zopad

= Vathooe
W ExlrquaivAhFraingnel st aeohct lagal s : bood
w Extinguish'harmurci sl] CustoeniCbject barget | © baal
w FrnFighizrZguad] vring narsa, ink d, ink Vackar i Vackar Y, Weckar ncal)]

4.7.7 Options

This is the class that hold the settings about the simulation.

Initial Design Report

SRREREREEST T ——— .
| Options ES
I Static Class

=l Fields
¢ cameraRotationSpeed : double
¥ gameSpeed : double
¢ iswindowed : boal
¢ mouseSensivicy | double
¢ mouseiwheelpeed ; double
¢ screenHeight :ink
@# screenwidth @int
=l Properties
’_"31:‘ ZameraRotationspeed { get; + : double
’_"31:‘ amespeed { get; +: double
’_"31:‘ Is\Windowed § qet; } : boal
’_"3'? MouseSensivity { get; }: double
i Mousewheelspeed { get; b @ double
E ScreenHeight § get; b int
E Screenwideh { get; b int
=l Methods
2" Options()
&% SetDefault() ; waid

o

W S . S S A S R S S S A — ——

4.7.8 Officer

This is the main NPC class. All other NPCs inherit this class.

4.7.9 PoliceOfficer

This is the NPC police class. These follow the orders given by the squad.
4.7.10 Bomberman

This is the bomb defuse NPC class. These follow the orders given by the squad.
4.7.11 Firefighter

This is the firefighter NPC class. These follow the orders given by the squad.

16

Initial Design Report

AhateartiTioes
Zhiz
i b har ot

Fleesfighbes E] BB E]
T Sauled OuT
=h Al =h Al e
= Ptk = Fethidk
% EntirapihibehiRreEngnes D sioneobed baget) | bool % Boanderwani e nores, ink i, o pociion;, ecioe deredion, ecine soled
W Extinap et nai sler | anobis Rt | bl W Do prbepand DL pTanDbst by | beed
W FreFighieed sy nares, ind i, Wechor posion, wectnn deedion , Yedos saks] & EnplodeloorCiuhone b dooe) | bood

W Zaarchi ool Foors roon) @ bood

rhabid L
e i

= Mol
S PolCRAn S T, I i ASCTr pion, VRnor desction, Wedr okl
& Ly Cistoneliedt doon) | bood
L % s oped DusnanCbiect vendiral | ool

4.7.12 CustomObject

This is the main object class. All other objects inherit this class.

4.7.13 Item

This class is used for environment objects and items carried by players and NPCs like maul,
door, etc.

4.7.14 BaseCharacter

This is the main character class. All other characters inherit this class.

17

Initial Design Report

ik Tl
& Dt

= Rl

g Tl | oy

W A | A

g ncapessd | dobky

W s |

4 askipeed | doubde
= PO

T Primaryaas { ped) 11 Stakes

T SmondanySiate | gat) | Saer
= Pt

< Dipavsk

i rsObject =
L

= Py
& cirechion : Vecbar
i Wik
g bePtesonl | baod
¥ vehis | ool
¥ N | TG
¥ ol | Obed T
& ppdtion | Yedtor
& ncala : hector
= Propesties
T Caection | gety eh) 1 e
ey ik
o Phwsond g b bool
== |imbia 4 gal; | bood
e Pk gk b
== Position | get; st § : ector
P Scuke | gk mak; | : actor
I Tyoe | pell 1 Chisct Types
= Mathad
% DunlcriObjsct] sring nasa, ink |, ChjsctTypas chjsctType, Vacin
% Diapasl) : void
2 Flasbad Typan

¥ counk | in
i EereTopes | FoaTopes
= Mathads

¥ [anisrng nas, i |, lanTyes ianTyvps, ObecTrpas abecTepa, o cont, Vechar
¥ [arisring nas, il |, lanTyes banTps, Ot Typas cbjectTvps, ecior pasition, V.

3! Flanbad Typan

" AbstractiCharscter sring reers, int i, Yecior paition, Vedbor diredbian, Sector scela)

& AindYedtor destinathan] | bl
& ke destnatin] | el
= Flast=d Typan

4.7.15 Map

This is the class holds other environment data. It is divided into sub regions.

4.7.16 Region

This is the class for a specific area of the map. Regions may be buildings, open areas, etc.

4.7.17 Building

This is the class for buildings in a region. It is divided into floors.

4.7.18 Floor

This is the class for a floor in a building. It is divided into rooms

Initial Design Report

4.7.19 Room

This is the class for rooms in a floor of a buildings.

Rectangle™apSechion
Abstract Clasz

Fields

&* leftUpCorner : Yector
o rightDiownCorner : Yeckor

Properties

ﬁ“‘ LeftUpCarner { get; + i Yeckar

'_'*&F RightDownCorner { get; + 1 Yeckor

Methods

b

3% RectangleMapSection{Wector leftUpCorner, Vector rightDownCorner)

[Room
Class
“#RactangleMapSection

= Fields
o# characters ; List<AbstractCharacter >
2# environmentObjects © List <CustomObject »
=| Properties
5 Characters { get; } : List<AbstractCharacter>
5 EnvironmentObjects { get; b : List < Customibjecks
= Methods
& AddCharacter{abstractCharacter character) @ void
& AddEnvironmentObjectiCustomObject obje) : void
9 RemoveCharacter{abstrackCharacter characker) @ void
t RemoveEnvironmentCbject{CustomObject obje) @ void
& RoomiYector leftlUpCorner, Vector rightDownCorner)

[Region
Clazz
“#Raoom

=I Fields
¥ buidings : List«Building >
= Properties
_“ﬁ“ Buildings 4 get; } : List <Building=
= Methods
% Region(vector leftUpCorner, Yector rightDownCornet)

¥

>

Fa

"'.Building

»|

Class
+ RectangleMapSection

=l Fields

¢ floors ; List<Floor >
=| Properties

o Floors { get) b1 List<Floors
= Methods

& Buildingivector leftUpCorner, Yector rightDownCorner)

-~

|
o

Map
Sealed Class
¥ RectangleMapSection

=I Fields

¥ regions : List<Region>
=| Properties

2 Regions { get; - : List<Regions
= Methods

& LoadMap(string fileMame) : bool
W Mapi¥ector leftUpCarner, Vectar rightDownCarnet)

| Floor

19

Clazz
+ RectangleMapSection

Fields

¢ floorto ¢ int
¢ rooms : List<Room>

Properties
5 Rooms { get; } : List<Rooms
Methods

%W Floor{vector leftUpCarner, Yector rightDownCarner, int Floorta)

#

Initial Design Report

-

L%

4.7.20 Leader
This is the main player class. All leaders inherit this class.

4.7.21 Policeleader

This is the police player’s class. It has a squad member and can give orders through this squad
class to PoliceOfficers

4.7.22 BombermanlLeader

This is the bomb defuse player’s class. It has a squad member and can give oerders through
this squad class to Bombermans.

4.7.23 FirefighterLeader

This is the firefighter player’s class. It has a squad member and can give orders through this
squad class to Firefighters.

AdrEracilracke
bkt Thn
4 Pl har e

Bamberesand vaiber = [T—
T T et T
= drfrac i ke = prfracl n el
= Mathadi = Mathad

s Bonbameanl sader| sring nams, ink d, Yecior pasition, Vecbr dirsction, Yecbar scela)
s COrderTaCwhussBonbyCustareChied: boanksd © baal
ip CrderTaEcplodaloo| CusloriCtiect daar) : baal

iy Order TolsaMNedCistareChied: door) @ bool
iy Ordar TolssR ocpal CuntonChject vindow | © baad

iy Paolicalasdannlring rears, inkid, Wector poaitdan, ecior dirsction, Vecbar scala)
& Order Tormsarchboons(H o sl | ol L
-
Firelight el mader
Saatard Tlm
& ddrtracl sacler
= Mathads
s Frafightarl sacr sring narsa, int id, Vecbar paniticn, Veckar direcban, et el
W OrderTal CumtranOtpact bargat | @ bood
W OrdarTaE tarwohmct laemi) ; bood

4.7.24 Civilian

This class is used for civilians to be rescued in the building.

4.7.25 Vector

This is the main class for defining a position, direction and size on the map. It also has
methods to calculate mathematical operations.

20

Initial Design Report

Yector

Sheuct

=I Fields

I IV Ly LY [I L Y
bl L I I e U

I
T

4
4

4

L1}

BRGUMEMT_LEMGTH © skring
BRGUMEMT_TYPE : string
BRGUMEMT_VALLE : string
Epsilon ; Vector
EqualityTaolerence : double
INTERPOLATION_RAMNGE : string
MAGNITUDE : string

Maxalue : Yeckor

Mintalue : Yeckor
NEGATIVE_MAGNITUDE : string
MNOM_VECTOR_COMPARISON @ string
MNORMALIZE_(: skring
ORAGIN_VECTOR _MAGMNITUDE : string
origin : Weckor
POSITIOMAL_VECTOR : string
THREE_COMPONEMTS ¢ string
UNIT_VECTOR : skring

x + double

whis 1 Weckor

v 1 double

wivis 1 Weckor

z ¢ double

zhxis 1 Veckor

= Properties
v prray { get; set; T doublef]
P Magritude { get; set; - : double
Ml thisfint indesx] { get; set; ¢ double
ﬁ:‘ ¥ 4 get; set; ;o double
ﬁ:‘ Y 4 get; set; }: double
ﬁ:' Z 4 get; set; }: double

3

21

= Methods

<

L aR oF oF SR oF SF 4F S O SF oF o 4F S oF o 4 o o oF 4F o 4 oF oF SF oF SF oF S JF S oF S 4F S 4 4F o o o o o SF o S oF S o S oF O 4F S o S o o o o o SF o S oF S ¢

Abs(y ; double

Abs(Yector w1 ; double

Anglediector other) ; double

Angledvector v1, Yector v2) ; double

CompareTo{object ather) @ int

CompareTo{Mector other) : ink

CrossProduck{¥ector other) : Vector

CrossProduck{Vector w1, Wector w2} : Wector
Distance{Wectar okhet) : double

Distance{Wectar w1, Yector v2) ¢ double
DotProductYectar other) @ double

DotProductYectar w1, Vector v2) @ dauble

Equals{object ather) : bool

Equals{¥ector other) : bool

GetHashCode!) : int

InterpolatelYector other, double control) : Yeckar
Interpolatelector other, double control, bool allowExtrapolation) : Wectar
Interpolatedyector w1, Yector w2, double control) © Vector

Interpolatevector w1, Yector +2, double control, bool allowExtrapolation) : Yeck...

IsBackFacedVector lineCfSight) @ bool
IsBackFacedVector normal, Yector lineCFSight) : bool
IsPerpendicular{vector other) : bool
IsPerpendicular{vector w1, Wector +2) : bool
IsUnityector() : bool

IsUnityector{vector w1} : bool

MaxWector other) ; Wector

MaxiWectar w1, Veckor v2) 1 Yector

Min(Yector other) @ Wactar

Min(Yector w1, Weckor w2) 1 Wector
MisedPraduct{vector ather _wv1, Wector ather_w2) @ double
MizedProduct(vectar w1, Wector w2, Wector w3) @ double
Mormalized) : void

Mormalizelvector w13 1 Vector

Pitch{doublz degree) @ woid

Pitch{Wector w1, double degres) @ Yector
PowComponents{double power) @ void
PawiComponents{¥ackar +1, double power) : Vector
Roll{double degres) : woid

Rolliwector v1, double degree) : Veckar
SqrComponentst) @ vaid
SgriZomponentsYector w13 : Yector
SqrbComponents() : woid
SqrtComponents{Yeckar «1) 1 Wector
SumComponents() : double
SumComponents{Yectar +1) : double
SumComponentagrs)) ; double
SumComponentsgrsiyector w13 double
TosStringt) © string

Tostring{string format, IFormatProvider FormatProvider) : string
ToerbString() : skring

Wector{double x, double v, double 2}
Vector{double[] xyz)

Vector(Yector w1}

Yawi{double degree) : woid

Wawiectar v1, double degres) « Vector

Initial Design Report

Below is shown an inheritance map among the abstract classes in the Engine module.

AbstraciTharatior
A bt <l
= DupfoandCbiandt
.
-~ - -
Ci=ilian = A vt S
Tl Tl Abzir gt Chm
= cirh e et = dtrack har e
= Pialcdu = Raldi
JF ncraRalic : doubde & oarnu ; Link=Thor>
= Propartias & remrshary : Link=vhtrackoffcar>
T Sowrekti | gy 1 doubie ¥ wopmcTypm : Soumd T pen
= Psthads =| Propartian
& Chilanizing e i i Vedhor postion, e dnedtin, Yedhor soale] i dwmn{oet; }: Lk <

' Squsdlvpa | gi; | : Squadyran

= Mathadi
W ATt ATInG rawe, B i SEAITREr ST, N s, Wedt
& Riested Tepes
Aestractiificer = Abstractlrackee
=km Abzir gt Chm
= prtrac ke = pntrac kb st
= Py = P
JF divophng ; dadia o lsder T : Loader Typa
4 dficarTypa : OffcarTypa & wouad ; flbrectSquasd
= Praparta = Propartiae
=l Pugciplirm { gat; | : doubla =i | garkerTypal { gek; b : LosdarTvpa
== o Typ | gat; b OfficarTvpan = Mtk
= Methods S Bt eadeTsring naes, Nk], Leader Tore kaadaTys, Vedtor posiion, e
N AR S e, ind i SRR TiTes OeRTiDe, Wecind [oat & s ndeE] | e
® Rieshsd Topes &+ Rested Tipes

4.8 Al

4.8.1 Path Finder

Given the start and end points, this class makes the necessary calculations to find a
path between two poins on the map.

4.8.2 Behaviours Decider

Using a script engine and looking at the objects’ behavior, this class determines how
the object should act in the simulation

22

Initial Design Report

4.8.3 Script Engine

This class is used by the behavior decider.

[pathFinder 7 | [BehaviourDecider
Clazs Clasz
=I Fields =I Fields
l.,\'f destination @ Yeckor J“ scriptEngine @ ScripkEngine
;‘P_’ map : Map = Methods
@¢ position : Vector ¢ DecidesndPerfarmBehaviour) ; void
=l Methads % DecideBehaviour) : Behaviours

& Move(double movementDistance) : bool Mested Types

= Mested Types

44

Behaviours
Enurn

<«

AStar
Sealed Clasz

() IComparable

<«

’ AStarMode
Class

23

|

-

L.

|

ScriptEngine
Sealed Class

=I Fields

;f;‘ engine | PythonEngine

= Methods

4" InitializePythonEngined) : void
& Run3Scriptistring scriptMame) ; void

Initial Design Report

5 State Transition Diagram

In-Simulation

Splash State State - Loading State

1 |-

Cpening
Cirematics
State

Fause Slate

Cancel
Raturm 1o Manu

Jain

Title Menu State

l."?pllm:l TE.-';:!:

Options Menu
State

Al.r:lr:-l Tﬁnun_[‘.ﬂn’.cl

Eave, Cancel

Graphics Controlier

Save Canoa|

Audio Options

Graphics
Menu State

Meanu

State Transition Diagram

24

T.ﬂ.f_"l}&ul

Join/Create

Menu State

Controller
configuration
State

Initial Design Report

6 System Analysis

6.1 Data Flow Diagram

6.1.1 DFD Level-0

This diagram explains Data Flow Level-0 of the simulation. Facilitator and trainees sends

commands via mouse, keyboard and microphone. They receive graphical representations of the
simulation environment and listen to other users from their speaker.

Trainee
Facilitator data Trainea data
/_‘_,..—-—-'___‘—-—h._‘_h‘ _’_F,_,..-—-—'—'_‘—'—-—-.._,*
Facilitator —_— Trainee
Simulation data Simulation data
T
c!a%
Sitryr . H
Uiation PP Trainee

DFD: Level O

6.1.2 DFD Level-1

This diagram explains Data Flow Level-1 of the simulation. Client-to-server data packets include
information such as user’s outgoing voice and user commands. Server-to-client data packets

include information such as other users’ incoming voice, environment objects’ modified
properties.

25

Initial Design Report

Simylation data

U

-

Trainee data

o Simyplation data
i - T
"\-\-._,_‘__‘_____:’_._.__,_,_.--f !
) . "-n.._‘_-_‘_‘_‘_:_-_._._'_'_._'_,.r'
Simulation data Trpinee data

Simulation data

DFD: Level 1

6.1.3 DFD Level-2

These diagrams explain Data Flow Level-1 of the simulation.

6.1.3.1 Server Core

e Object’s visual data contains visible objects information.

e Graphics engine returns only exceptions to server core.

e Object’s dynamic data contains physical object information.

e Processed object’s dynamic data consists of physical object’s modified information.
e NPC orders consist of given to non-playing characters.

e NPC actions consist of non-playing characters’ reaction to given orders.

e User commands are commands generated by the user inputs.

26

Initial Design Report

Physics engine

Sarver-to-client data
.—-—--—-—-___.l

‘—...___________,_.—

ient-to-server data

MNetwork
engine

Al

Keystroke
Keyboard
Input manager Server core
Mouse =
Mouse movement g
bution clicks E -g
23
i
s Volea chat
o _
;g.“'o angine
WO Sound
Microphone
Chat channel sounds Enviorenmeant
sound
Speaker
Speaker
6.1.3.2 Client Core

27

Object’s signal data contains visible objects information.

Graphics engine returns only exceptions to server core.

User’s dynamic data contains user’s character’s physical information.
Processed user’s dynamic data consists of physical object’s modified information
User commands are commands generated by the user inputs.

Cutgoing network

__packel

Incoming netwark
packet

Initial Design Report

Maonitor

g ‘_,
as!'nf’?"fads
Mage cene

Keyboard Keystroke

Graphics
engine

Input manager

Mouse

Mouse movement
buttan elicks

Simplified
physics engine

Client core

Client-to-server data
—

e

\alce chat
angine

User WV' Nﬂt channel sounds

Microphone

6.2 Use Case Diagrams

Speaker

6.2.1 Client: Menu State Use Case

Enviorenment

Sarver-to-client data

sounds

MNetwork
engine

Sound

Quigoing network

__padel

Incoming network
packet

Wior&nment sounds

Speaker

This is the main screen the client will face when starting the program. The screen has 3 buttons.
Join: Connect to the server at the given IP address.

Options: Set program options such as graphics, audio and controller configurations.

Exit: Terminates the program.

28

Initial Design Report

Options

Client: Menu state
6.2.2 Server: Menu State Use Case

This is the main screen the server will face when starting the program. The screen has 3 buttons.
Create: After clicking this button and choosing the simulation mode, the simulation will initialize.
The clients will then be able to connect the server by entering the server’s IP.

Options: Set program options such as graphics, audio and controller options.

Exit: Terminates the program.

Options

Server: Menu state

29

Initial Design Report

6.2.3 Client In-Simulation State Use Case

This diagram explains what the client can do while the simulation is running.

Return to Menu: Selecting this will switch the current state to the user menu state.

Pause: Selecting this will send a pause request to server and the simulation’s current state will be
switched to pause state.

Give Order: The client will be able to give commands such as: Move squad, use tools, use resources
and use vehicle. If the simulation is at “Passive Mode”, these commands shall be given to the
facilitator via voice chat and are executed by the facilitator. If the simulation is at “Active Mode”,
these commands can be given by either voice chat or user interface.

Move: Moves the user on the map using the keyboard and the mouse.

Voice chat: Users will be able to communicate with the facilitator and other users by voice chat.

Return to
menu

Move
squad

i

Give

<<include>>—
order

Use
resource

) @)

b

Client: In-simulation state

6.2.4 Server: In-Simulation State Use Case

This diagram explains what the server can do while the simulation is running.

Return to Menu: Selecting this will switch the current state to the server menu state.

Pause: The simulation’s current state will be switched to pause state.

Change View: By default, facilitator will begin at “Free View”, in which he can move in any
direction without any constraint. He also can view the scene directly from any client’s view at
“User View”. Another view mode is the “Map View”, in which the facilitator sees the clients as
little symbols on a full screen map.

30

Initial Design Report

Apply given orders: Facilitator can, at any time, execute orders such as: Move squad, use tools,

use resources and use vehicle. At “Passive Mode”, these orders may be executed only by the

facilitator.

Voice chat: Facilitator can communicate with the clients via voice chat.

Modify objects: Depending on the flow of the scenario, facilitator can create or dispose objects, or

modify attributes of an object.

Return to
menu

Change

view

Apply given
orders

o

Modify
objects

<<include>>—

<<include>>—

Move squad

o

Use
resource

i

Create/
Dispose
objects

Server: In-simulation state

6.2.5 Server and Client: Pause State Use Case

This diagram explains available actions for the server and the user when the simulation is paused.
Resume: Selecting this will switch simulation’s current to in-simulation state.

Voice chat: During the Pause State, users will be able to voice chat.

31

Initial Design Report

Server and Client: Pause state

7 Tools

e The system will run on Windows XP operating system. This is preferred because of its large
usage and that other tools were designed to run on XP.

e .NET will be used as programming platform throughout the project since the group
members are relatively experienced in C#.

e lIrrlicht game engine will be used for graphics. The easiness of using this engine and wide
support on developer’s site were important facts on our choosing this tool as graphics
renderer.

e Textures and images will be edited on Paint Shop Pro.

e For designing 3D objects and animations, 3DSMax will be used

8 Future Works

In this initial design report the overall project is designed with some partially designed modules.
Until the final design report all modules are planned to be fully designed with all elements fully
designed and only implementation process will be left to complete to next term. Also before the due
date of final report a prototype demo will be presented to feature some basic functionalities of the
final product and the integration between the modules will be demonstrated. But before this final
prototype, module demos will be presented separately to our assistant.

32

Initial Design Report

O |TaskName Duration Start Finish |F Oct 07 [Nov 07 [Dec'07 [Jan"08 [Feb 08 [Mar 08 [Apr 08 [May 08 [Jun08 |
17[24]01[08]15]22[28]05[12[19[26]03[10[17 [24]31[07 [14]21[28 0411 [18]25 03 [10[17[24 3107 [14]21 [28]05[12[19]26]02[09[16]23]
1 | Scenario Design 15 days| Mon 15.10.07| Fri02.11.07 O " "
2 |F Concept Research 15 days?| Mon 15.10.07) Fri02.11.07 I
3 |E] Requirement Analysiz Rep| 15 days?| Tue 16.10.07) Sun 04.11.07
4 | Server Core Design 30 day=?| Mon 03.12.07 Fri11.01.08 iSalih
5 m Client Core Dezign 30 days?| Mon 03.12.07) Fri11.01.08 ;Salih
[m Graphics De=ign 45 day=?| Sun 041107 Fri04.01.08
T Metwork Design 46 day=?| Sun 04.11.07 Fri04.01.08 |kadir
i Al Design 45 days?| Sun 04.11.07 Fri04.01.08
9 m Physice Design 45 days?| Sun 04.11.07) Fri04.01.08
10 |4 Graphics Demo 15 days?| Mon 24.12.07) Fri11.01.08
AT | Network Demo 15 days?| Mon 241207 Fri11.01.08 pdulkadir
12 | Phyzics Demo 15 days?| Mon 241207 Fri11.01.08
13 m Al Demo 15 day=?| Mon 241207 Fri11.01.08
14 R Audio Demo 15 day=? Mon 241207 Fri11.01.08
15 | Map Design 55 days| Mon 17.12.07| Fri28.02.08 O Mustafa
16 [Fd Models Design 65 days? Mon 03.12.07 Fri29.02.08 e ——— 111}
17 m Uszer Interface Design 25 days?| Mon 10.12.07 Fri11.01.08
12 |[F] Initial De=ign Report 1day? Fri30.11.07 Fri3011.07
19 | Integration Demos 11 days?| Mon 19.11.07| Mon 03.12.07
20 B Final De=ign Report 1day? Fri11.01.08 Fri11.01.08 @ 1M
21 m Prototype Implementation 10 days| Mon 311207 Fri11.01.08 [—
22 _H_ Prototype Demo Odays Fri18.01.08 Fri18.01.08 # 180
23 | Graphics Implementation | 55 days?| Mon 21.01.08 Fri04.04.08 ey salih
24 | Client Core Implementation | 60 days?| Mon 21.01.08| Fri11.04.08 | Mustafa;Salih
25 |4 Server Core Implementatio| 60 days| Mon 21.01.08 Fri11.04.08 | Mustafa;Salih
% | Input Manager Implementat| 10 days?| Mon 21.01.08| Fri01.02.08 l Abdulkadir
27 | User Interface Implemental] 15 days? Mon 17.03.08 Fri04.04.08 I Salih
28 | Allmplementation 45 day=?| Mon 04.02.08 Fri04.04.08 | Mustafa
28 | Physics Implementation 17 dayz| Mon 03.03.08 Tue 25.03.08 [icmﬁﬁ
o @ [Server Network Implement| 80 days| Mon 21.01.08) Fri11.04.08 | Abdulkadir;Kamil
m 3 | Client Network Implementa:| 60 days?| Mon 21.01.08 Fri11.04.08 | Abdulkadir;Kamil
e} 2 | Voice Chat Implementation | 30 days? Mon 03.03.08 Fri11.04.08 e Kamil
m 33 m Alpha Testing 21 days?| Mon 31.03.08 Mon 28.04.08 I
Q | Beta Testing 27 days? Tue 29.04.03 Wed 04.08.03 : —
v 35 | Quality Azsurance 14 days Tue13.05.08 Fri30.05.08 | —|
¥* |FH Documentation 15 days?| Mon 12.05.08 Fri30.05.08 [—]
N ETAET | Final Product Presentation | 10 days?| Mon 19.05.08 Fri30.05.08 —
® |E Final Product Release 6days?| Fri23.05.08| Fri30.05.08 ¥ 30.05

33

